Validez y fiabilidad del sensor láser del sistema BioLaserSport® para el análisis de la velocidad de la carrera. (Validity and reliability of the laser sensor of BioLaserSport® system for the analysis of the running velocity).

Amelia Ferro Sánchez, Pablo Floría Martín, Jorge Villacieros, Raquel Aguado-Gómez

Resumen


El análisis de la velocidad de carrera mediante sensores láser permite la obtención de datos en tiempo real siendo ventajosos frente a otros sistemas. El objetivo de este estudio fue valorar la validez y fiabilidad del sensor láser del sistema BioLaserSportÒ para el cálculo de velocidades medias y máximas mediante estadísticos relativos y absolutos. Los participantes fueron 17 varones (20.85 ± 1.54 años). Se utilizó un sensor láser tipo 1 (LDM301, Jenoptik, Germany) que registró posiciones de los deportistas a 2000 Hz. Los datos se trataron con la rutina DSL-30 creada con DasyLab v.10.0. Para la validación se utilizó un sistema de fotogrametría-2D con una cámara de alta velocidad (Exilim High Speed EX-F1, Casio) y SkillSpector v.1.3.2. (Video4coach, Grubbemollevej). Además, se utilizaron foto-células de doble haz (Polifemo Light, Microgate, Italy) y un cronómetro Racetime2 (Microgate, Italy). Se registraron, durante dos días, tres series de 30 m de carrera a máxima velocidad. El sensor láser proporcionó, con relación a la fotogrametría, diferencias en las velocidades medias y máximas de -0.11 m·s-1 y 0.14 m·s-1, respectivamente, con unos coeficientes de correlación superiores a 0.86, y mayores de 0.92 con las foto-células para las velocidades medias. Este mostró una excelente fiabilidad test-retest para las velocidades medias con un coeficiente de correlación intraclase (ICC) entre 0.7-0.9 y un error estándar de la media (SEM y SEM%), intrasesión e intersesión, menor de 0.05 m·s-1 y 0.12 m·s-1, respectivamente, y menores de 0.75% y de 2%, respectivamente. Para las velocidades máximas, los valores fueron menores de 0.10 m·s-1 y 0.17 m·s-1, respectivamente, y en ambos casos menores a 1.36% y 1,89%. El láser fue capaz de identificar mínimos cambios detectables (MDC y MDC%) intrasesión, para ambas variables, menores a 0.14 m·s-1 y 0.29 m·s-1, respectivamente (< 2.09% y < 3.76%) e intersesión, menores de 0.34 m·s-1 y 0.47 m·s-1 (< 5.56% y < 5.25%), respectivamente. En consecuencia, es un instrumento útil para el análisis de la evolución de la velocidad intrasujeto y entre sujetos en la carrera de velocidad entre 0-30 m, proporcionando resultados en tiempo real, pero se han de considerar los SEM, SEM%, MDC y MDC% para valorar la mejora del rendimiento.

Abstract

Speed running analysis using laser sensors allows to obtain data in real-time showing an advantage compared with other systems. The objective of this study was to assess the validity and reliability of the laser sensor of the BioLaserSport® system for the calculation of mean and maximum velocities using relative and absolute statistics tools. The participants were 17 men (20.85 ± 1.54 years). A laser sensor type 1 (LDM301, Jenoptik, Germany) was used to record positions of the subjects to 2000 Hz. The data were analyzed using DSL-30 routine created with DasyLab v.10.0. A Photogrammetry-2D system with a high-speed camera (Exilim High Speed EX-F1, Casio) and SkillSpector v.1.3.2. (Video4coach, Grubbemollevej) and a reference system 4 x 2 m2 was used. Furthermore, a double photocell (Polifemo Light, Microgate, Italy) with an electronic stopwatch (Microgate, Italy) Racetime2 was used. Three series of 30 m sprint were recorded during two days. The results indicated that the laser sensor provided differences in mean and maximum velocities of -0.11 m·s-1 and 0.14 m·s-1, respectively. The correlation coefficients were higher than 0.86 in relation to photogrammetry and higher than 0.92 in relation to photo-cells. The laser system showed an excellent test-retest reliability for mean velocities with a coefficient of correlation intraclass (ICC) between 0.7-0.9. The standard error of the mean (SEM and SEM%), intra-session e inter-session, were lower than, 0.05 m·s-1 and 0.12 m·s-1, respectively, and in both cases less than 0.75% and 2%, respectively . In relation to maximum velocities, the values were lower than 0.10 m·s-1 and 0.17 m·s-1, respectively, and in both cases less than 1.36% and 1,89%. The minimum detectable change (MDC and MDC%) intra-session, for both variables, was lower than 0.14 m·s-1 and 0.29 m·s-1, respectively, (< 2.09% y < 3.76%). In relation to inter-session, the values were lower than 0.34 m·s-1 and 0.47 m·s-1 (< 5.56% y < 5.25%), respectively. Therefore, the laser system was a useful tool to analyze the evolution of the intra-subject and inter-subject velocity in a 30 m sprint running. Moreover, it provides results in real time, although assessing performance improvements must be considered the SEM, SEM%, MDC and MDC% values.

 http://dx.doi.org/10.5232/ricyde2012.03005

---------------------------------------------------------------------

Referencias/references

Atkinson, G., & Nevill, A. M. (1998). Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Medicine, 26(4), 217-238.
http://dx.doi.org/10.2165/00007256-199826040-00002
PMid:9820922

Bezodis, N. E.; Salo, A. I. T., & Trewartha, G. (2012). Measurement error in estimates of sprint velocity from a laser displacement measurement device. International Journal of Sports Medicine, 33(6), 439-444.
http://dx.doi.org/10.1055/s-0031-1301313
PMid:22450882

Coutts, A. J., & Duffield, R. (2010). Validity and reliability of GPS devices for measuring movement demands of team sports. Journal of Science and Medicine in Sport, 13(1), 133-135.
http://dx.doi.org/10.1016/j.jsams.2008.09.015
PMid:19054711

Delecluse, C.; Roelants, M.; Diels, R.; Koninckx, E., & Verschueren, S. (2005). Effects of whole body vibration training on muscle strength and sprint performance in sprint-trained athletes. International Journal of Sports Medicine, 26(8), 662-668.
http://dx.doi.org/10.1055/s-2004-830381
PMid:16158372

Di Prampero, P. E.; Fusi, S.; Sepulcri, L.; Morin, J. B.; Belli, A., & Antonutto, G. (2005). Sprint running: A new energetic approach. Journal of Experimental Biology, 208(14), 2809-2816.
http://dx.doi.org/10.1242/jeb.01700
PMid:16000549

Ferretti, G.; Bringard, A., y Perini, R. (2011). An analysis of performance in human locomotion. European Journal of Applied Physiology, 111(3), 391-401.
http://dx.doi.org/10.1007/s00421-010-1482-y
PMid:20437056

Floría, P., y Ferro, A. (2011). Análisis del rendimiento en competición entre corredores de 100 metros lisos de diferente nivel. RICYDE. Revista Internacional de Ciencias del Deporte, 7(26), 408-416.
http://dx.doi.org/10.5232/ricyde2011.02606

Harrison, A. J.; Jensen, R. L., & Donoghue, O. (2005). A comparison of laser and video techniques for determining displacement and velocity during running. Measurement in Physical Education and Exercise Science, 9(4), 219-231.
http://dx.doi.org/10.1207/s15327841mpee0904_2

Hill, A. V. (1928). The air resistance to a runner Proceedings of the Royal Society B: Biological Sciences, 102, 380-385.
http://dx.doi.org/10.1098/rspb.1928.0012

Varley, M. C.; Fairweather, I. H., & Aughey, R. J. (2012). Validity and reliability of GPS for measuring instantaneous velocity during acceleration, deceleration, and constant motion. Journal of Sports Sciences, 30(2), 121-127.
http://dx.doi.org/10.1080/02640414.2011.627941
PMid:22122431

Weir, J. P. (2005). Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. Journal of Strength and Conditioning Research, 19(1), 231-240.
PMid:15705040

Williams, J. R. (2008). The declaration of helsinki and public health. Bulletin of the World Health Organization, 86(8), 650-652.
http://dx.doi.org/10.2471/BLT.08.050955
PMid:18797627    PMCid:2649471

Yeadon, M. R.; Kato, T., & Kerwin, D. G. (1999). Measuring running speed using photocells. Journal of Sports Sciences, 17(3), 249-257.
http://dx.doi.org/10.1080/026404199366154
PMid:10362392

Young, W.; Farrow, D.; Pyne, D.; McGregor, W., & Handke, T. (2011). Validity and reliability of agility tests in junior australian football players. Journal of Strength and Conditioning Research, 25(12), 3399-3403.
http://dx.doi.org/10.1519/JSC.0b013e318215fa1c
PMid:22076089

---------------------------------------------------------------------


Palabras clave/key words


carrera de velocidad; rendimiento; mínimo cambio detectable; error estándar de la media; fotogrametría; cronometraje foto-células; sprint runnig; performance; minimum detectable change; standard error of the mean; photogrammetry; stopwatch photo-cells.

Texto completo/Full Text:

PDF




------------------------ 0 -------------------------

RICYDE. Revista Internacional de Ciencias del Deporte
logopublisher_168


Publisher: Ramón Cantó Alcaraz
ISSN:1885-3137 - Periodicidad Trimestral / Quarterly
Creative Commons License