Origin and modifications of the geometrical centre to assess team behaviour in team sports: a systematic review. [Origen y modificaciones del punto geométrico para evaluar el comportamiento táctico colectivo en deportes de equipo: una revisión sistemática].

Markel Rico-González, José Pino-Ortega, Fabio Yuzo Nakamura, Felipe Arruda-Moura, Asier Los Arcos

Resumen


Abstract

The aim of the present study was to systematically review the origin and modifications of the geometrical centre (GC) in the assessment of team behaviour in team sports. Studies were identified following the PRISMA guidelines and PICO design for systematics reviews in four electronic databases (PubMed, SPORTDiscus, ProQuest Central, and Web of Sciences). A total of 3,973 documents were initially retrieved, of which 1,779 were duplicates. After checking 2,178, another 36 were added from the references of the studies. 72 articles met de inclusion criteria and 7 were included for the systematic review. Habitually, the GC is computed as the mean [X,Y] of several or all players in the sports team. Despite the relevance of the location of the players with respect to the goal, habitually, the goalkeeper/target has not been considered in the measurement of the GC. Two techniques (i.e. Hilbert transformation and cluster analyses) have been applied to analyse the synchronisation (i.e. relative phase) and the average mutual information (AMI) to assess the complexity and regularity or predictability of the GC in team sports. Since the GC does not consider the goalkeepers and team dispersion, this measure should be interpreted with caution, but together with other tactical variables can provide interesting information for team sports technical staff.

Resumen

El objetivo de este estudio fue revisar sistemáticamente el origen y las modificaciones del centro geométrico (GC) en la evaluación del comportamiento táctico colectivo en los deportes de equipo. La identificación de los estudios se llevó a cabo en cuatro bases de datos (PubMed, SPORTDiscus, ProQuest Central, and Web of Sciences) siguiendo la guía PRISMA y el diseño PICO para revisiones sistemáticas. Un total de 3,973 documentos fueron inicialmente recuperados, de los cuales 1,779 eran duplicados. Después de analizar 2,178 artículos, otros 36 fueron añadidos tras ser rescatados de las referencias bibliográficas. 72 artículos cumplieron los criterios de inclusión, de los cuales 7 sugirieron variables tácticas originales relacionadas con el posicionamiento del GC. Dos cálculos diferentes han sido propuestos para medir el GC en los deportes de equipo, siendo la media [X, Y] de varios o todos los jugadores del equipo el más utilizado. El primer cálculo del GC fue propuesto en fútbol y consideró al portero, pero este jugador especial no suele ser incluido en la medición. La ubicación de los jugadores con respecto a la diana no ha sido considerada para valorar el GC en deportes de equipo como el fútbol. Por lo tanto, las variables tácticas complementarias, como por ejemplo la distancia entre el portero o la portería y el GC, podrían asociarse con el GC para evaluar la posición relativa de varios jugadores en el espacio de juego. Dos técnicas distintas (i.e. la transformación de Hilbert y el cluster analyses) han sido aplicadas para analizar la sincronización (i.e. la fase relativa) y el average mutual information (AMI) para evaluar la complejidad y regularidad o previsibilidad del GC en los deportes de equipo.

https://doi.org/10.5232/ricyde2020.06106

References/referencias

Araújo, D., & Davids, K. (2016). Team Synergies in Sport: Theory and Measures. Frontiers in Psychology, 7.
https://doi.org/10.3389/fpsyg.2016.01449

Bourbousson, J.; Sève, C., & McGarry, T. (2010a). Space-time coordination dynamics in basketball: Part 1. Intra- and inter-couplings among player dyads. Journal of Sports Sciences, 28(3), 339-347.
https://doi.org/10.1080/02640410903503632

Bourbousson, J.; Sève, C., & McGarry, T. (2010b). Space-time coordination dynamics in basketball: Part 2. The interaction between the two teams. Journal of Sports Sciences, 28(3), 349-358.
https://doi.org/10.1080/02640410903503640

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educ Psychol Meas. 20(1), 37-46.
https://doi.org/10.1177/001316446002000104

Cover, T. M., & Thomas, J. A. (2005). Entropy, Relative Entropy, and Mutual Information. In Elements of Information Theory (pp. 13-55). John Wiley & Sons, Inc.
https://doi.org/10.1002/047174882X.ch2

Duarte, R.; Araújo, D.; Correia, V.; Davids, K.; Marques, P., & Richardson, M. J. (2013). Competing together: Assessing the dynamics of team-team and player-team synchrony in professional association football. Human Movement Science, 32(4), 555-566.
https://doi.org/10.1016/j.humov.2013.01.011

Duarte, R.; Araújo, D.; Freire, L.; Folgado, H.; Fernandes, O., & Davids, K. (2012). Intra- and inter-group coordination patterns reveal collective behaviors of football players near the scoring zone. Human Movement Science, 31(6), 1639-1651.
https://doi.org/10.1016/j.humov.2012.03.001

Frank, T. D., & Richardson, M. J. (2010). On a test statistic for the Kuramoto order parameter of synchronization: An illustration for group synchronization during rocking chairs. Physica D: Nonlinear Phenomena, 239(23-24), 2084-2092.
https://doi.org/10.1016/j.physd.2010.07.015

Frencken, W., & Lemmink, K. (2009). Team kinematics of small-sided soccer games: A systematic approach. In: Reilly, T, and F. Korkusuz (Eds.), Science and Football VI. In Science and Football VI (pp. 161-166).

Frencken, W.; Lemmink, K.; Delleman, N., & Visscher, C. (2011). Oscillations of centroid position and surface area of soccer teams in small-sided games. European Journal of Sport Science, 11(4), 215-223.
https://doi.org/10.1080/17461391.2010.499967

Gonçalves, B. V.; Figueira, B. E.; Maçãs, V., & Sampaio, J. (2014). Effect of player position on movement behaviour, physical and physiological performances during an 11-a-side football game. Journal of Sports Sciences, 32(2), 191-199.
https://doi.org/10.1080/02640414.2013.816761

Graham R. (1972). An efficient algorithm for determining the convex hull of a finite planar set. Information Processing Letters. North-Holland publishing company, 132-133.
https://doi.org/10.1016/0020-0190(72)90045-2

Grehaigne, J.-F.; Bouthier, D., & David, B. (1997). Dynamic-system analysis of opponent relationships in collective actions in soccer. Journal of Sports Sciences, 15(2), 137-149.
https://doi.org/10.1080/026404197367416

Kuramoto, Y. (1984). Chemical Oscillations, Waves, and Turbulence. Springer Berlin Heidelberg.https://doi.org/10.1007/978-3-642-69689-3

Lames, M.; Ertmer, J., & Walter, F., L. (2010). Oscillations in football-Order and disorder in spatial interactions between the two teams. International Journal of Sport Psychology, 41(4), 85.

Low, B.; Coutinho, D.; Gonçalves, B.; Rein, R.; Memmert, D., & Sampaio, J. (2020). A Systematic Review of Collective Tactical Behaviours in Football Using Positional Data. Sport Med., 50, 343-385.
https://doi.org/10.1007/s40279-019-01194-7

Memmert, D.; Lemmink, K. A. P. M., & Sampaio, J. (2017). Current Approaches to Tactical Performance Analyses in Soccer Using Position Data. Sports Medicine, 47(1), 1-10.
https://doi.org/10.1007/s40279-016-0562-5

Moher, D.; Liberati, A.; Tetzlaff, J., & Altman, D. G. (2010). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. International Journal of Surgery, 8(5), 336-341.
https://doi.org/10.1016/j.ijsu.2010.02.007

Moura, F. A.; Santana, J. E.; Marche, A. L.; Aguiar, H., & Cunha, S. A. (2011). Quantitative analysis of the futsal players'organization on the court. Portuguese Journal of Sport Sciences, 11(Suppl 2), 105-108.

Palut, Y., & Zanone, P.-G. (2005). A dynamical analysis of tennis: Concepts and data. Journal of Sports Sciences, 23(10), 1021-1032.
https://doi.org/10.1080/02640410400021682

Parlebas. (2002). Elementary mathematic modelization of games and sports. Bridging the gap between empirical sciences and theoretical research in the social sciences. In The Explanatory Power of Models (197-228). Kluwer Academic.
https://doi.org/10.1007/978-1-4020-4676-6_11

Passos, P.; Araújo, D.; Davids, K.; Gouveia, L., Serpa, S.: Milho, J., & Fonseca, S. (2009). Interpersonal Pattern Dynamics and Adaptive Behavior in Multiagent Neurobiological Systems: Conceptual Model and Data. Journal of Motor Behavior, 41(5), 445-459.
https://doi.org/10.3200/35-08-061

Pincus, S. (1991). Approximate entropy as a measure of system complexity. Proceedings of the National Academy of Sciences, 88(6), 2297-2301.
https://doi.org/10.1073/pnas.88.6.2297

Rein, R., & Memmert, D. (2016). Big data and tactical analysis in elite soccer: Future challenges and opportunities for sports science. SpringerPlus, 5(1).
https://doi.org/10.1186/s40064-016-3108-2

Rico-González, M.; Los Arcos, A.; Nakamura, F. Y.; Moura, F. A., & Pino-Ortega, J. (2019). The use of technology and sampling frequency to measure variables of tactical positioning in team sports: A systematic review. Research in Sports Medicine, 28(2), 279-292.
https://doi.org/10.1080/15438627.2019.1660879

Rico-González, M.; Pino-Ortega, J.; Nakamura, F. Y.; Moura, F. A., & Arcos, A. L. (2020). Identification, Computational Examination, Critical Assessment and Future Considerations of Distance Variables to Assess Collective Tactical Behaviour in Team Invasion Sports by Positional Data: A Systematic Review. Int. J. Environ. Res. Public Health, 14.
https://doi.org/10.3390/ijerph17061952

Sampaio, J., & Maçãs, V. (2012). Measuring Tactical Behaviour in Football. International Journal of Sports Medicine, 33(05), 395-401.
https://doi.org/10.1055/s-0031-1301320

Sarmento, H.; Anguera, M. T.; Pereira, A., & Araújo, D. (2018). Talent Identification and Development in Male Football: A Systematic Review. Sports Med, 48(4), 907-931.
https://doi.org/10.1007/s40279-017-0851-7

Sarmento, H.; Clemente, F. M.; Araújo, D.; Davids, K.; McRobert, A., & Figueiredo, A. (2018). What Performance Analysts Need to Know About Research Trends in Association Football (2012-2016): A Systematic Review. Sports Medicine, 48(4), 799-836.
https://doi.org/10.1007/s40279-017-0836-6

Schmidt, R. C.; O' Brien, B., & Sysko, R. (1999). Self organization of between person cooperative tasks and possible applications to sport. Int. J. Sport Psychol, 30, 558-579.

Schöllhorn W. (2003). Coordination Dynamics and its Consequences on Sports. Int. J. Comp. Sci. Sport, 2(2), 40-46.

Silva, P.; Chung, D.; Carvalho, T.; Cardoso, T.; Davids, K.; Araújo, D., & Garganta, J. (2016). Practice effects on intra-team synergies in football teams. Human Movement Science, 46, 39-51.
https://doi.org/10.1016/j.humov.2015.11.017

Silva, P.; Duarte, R.; Esteves, P.; Travassos, B., & Vilar, L. (2016). Application of entropy measures to analysis of performance in team sports. International Journal of Performance Analysis in Sport, 16(2), 753-768.
https://doi.org/10.1080/24748668.2016.11868921

Silva, P.; Duarte, R.; Sampaio, J.; Aguiar, P.; Davids, K.; Araújo, D., & Garganta, J. (2014). Field dimension and skill level constrain team tactical behaviours in small-sided and conditioned games in football. Journal of Sports Sciences, 32(20), 1888-1896.
https://doi.org/10.1080/02640414.2014.961950

Silva, P.; Travassos, B.; Vilar, L.; Aguiar, P.; Davids, K.; Araújo, D., & Garganta, J. (2014). Numerical Relations and Skill Level Constrain Co-Adaptive Behaviors of Agents in Sports Teams. PLoS ONE, 9(9), e107112.
https://doi.org/10.1371/journal.pone.0107112

Travassos, B.; Araújo, D.; Duarte, R., & McGarry, T. (2012). Spatiotemporal coordination patterns in futsal (indoor football) are guided by informational game constraints. Human Movement Science, 31(4), 932-945.
https://doi.org/10.1016/j.humov.2011.10.004

Travassos, B.; Davids, K.; Araújo, D., & Esteves, T. P. (2013). Performance analysis in team sports: Advances from an Ecological Dynamics approach. International Journal of Performance Analysis in Sport, 13(1), 83-95.
https://doi.org/10.1080/24748668.2013.11868633

Yue, Z.; Broich, H.; Seifriz, F., & Mester, J. (2008). Mathematical Analysis of a Soccer Game. Part I: Individual and Collective Behaviors. Studies in Applied Mathematics, 121(3), 223-243.
https://doi.org/10.1111/j.1467-9590.2008.00413.x

 

 


Palabras clave/key words


collective tactical behaviour; spatial centre; centroid; positioning; comportamiento táctico colectivo; centro geométrico; centroide; posicionamiento.

Texto completo/Full Text:

PDF (English) PDF




------------------------ 0 -------------------------

RICYDE. Revista Internacional de Ciencias del Deporte
logopublisher_168


Publisher: Ramón Cantó Alcaraz
ISSN:1885-3137 - Periodicidad Trimestral / Quarterly
Creative Commons License