Influencia del core en la producción de potencia en ciclistas. [Core influence on the power production in cyclists].

Alberto Galindo-Martínez, Alejandro López-Valenciano, Juan Miguel Vallés-González, Jose Luis López Elvira

Resumen


El objetivo de este estudio fue analizar la relación entre la producción de potencia en ciclismo, y variables analíticas de core, como la fuerza, la estabilidad y la cinemática durante el pedaleo. En este estudio participaron 30 ciclistas de tres disciplinas, los cuales realizaron un test de estabilidad sedente, un test de fuerza de extensores y flexores de tronco y un test de potencia en ciclismo, donde se analizó la cinemática del tronco. Se encontró una mayor estabilidad sedente en los ciclistas de mountain bike, una mayor inclinación anterior torácica en ciclistas de carretera y un mayor rango de inclinación lateral en triatletas. Solo se encontraron correlaciones significativas entre la inclinación anterior torácica y la potencia crítica. En conclusión, tanto la fuerza como la estabilidad de tronco tienen una baja influencia en la producción de potencia, aunque sí existen diferencias entre las distintas disciplinas en las dimensiones del core.

Palabras clave: fuerza de Tronco; estabilidad de tronco; rendimiento; umbral de potencia funcional.


Abstract

The purpose of this study was to analyse the relationship between cycling power production and core analytical variables, such as strength, stability, and kinematics during pedalling. 30 cyclists from three disciplines participated in this study, who performed a sitting stability test, a trunk flexor and extensors strength test, and a cycling power test (FTP), where trunk kinematics were analysed. Greater seated stability was found in mountain bike cyclists, a greater anterior thoracic tilt in road cyclists, and a greater range of lateral tilt in triathletes. Only significant correlations were found between thoracic anterior tilt and critical power. In conclusion, both the strength and the stability of the trunk had a low influence on the power production, although there are differences between the different cycling disciplines in the dimensions of the core.

Keywords: core strength; core stability; performance: functional threshold power.

https://doi.org/10.5232/ricyde2022.06903

Referencias/references

Abt, J. P.; Smoliga, J. M.; Brick, M. J.; Jolly, J. T.; Lephart, S. M., & Fu, F. (2007). Relationship between cycling mechanics and core stability. Journal of Strength and Conditioning Research, 21(4), 1300–1304.
https://doi.org/10.1519/R-21846.1

Allen, H.; Coogan, A., & McGregor, S. (2019). Training and Racing with a Power Meter (Third edition). USA: Velopress.

Asplund, C., & Ross, M. (2010). Core stability and bicycling. Current Sports Medicine Reports, 9(3), 155–160.
https://doi.org/10.1249/JSR.0b013e3181de0f91

Barbado, D.; Lopez-Valenciano, A.; Juan-Recio, C.; Montero-Carretero, C.; Van Dieën, J. H., & Vera-Garcia, F. J. (2016). Trunk stability, trunk strength and sport performance level in judo. PloS ONE, 11(5).
https://doi.org/10.1371/journal.pone.0156267

Bishop, D. (2003). Warm up II: Performance changes following active warm up and how to structure the warm up. Sports Medicine, 33(7), 483–498.

Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7(3), 1247–1250.

Chidley, J. B.; MacGregor, A. L.; Martin, C.; Arthur, C. A., & Macdonald, J. H. (2015). Characteristics explaining performance in downhill mountain biking. International Journal of Sports Physiology and Performance, 10(2), 183–190.
https://doi.org/10.1123/ijspp.2014-0135

Engelbrecht, L., & Terblanche, E. (2018). Physiological performance predictors in mountain bike multi-stage races. Journal of Sports Medicine and Physical Fitness, 58(7–8), 951–956.
https://doi.org/10.23736/S0022-4707.17.07139-0

Faria, E. W.; Parker, D. L., & Faria, I. E. (2005). Factors Affecting Performance – Part 2. Sports Medicine, 35(4), 313–337.

Ferrer Roca, B. (2015). Comparación de diferentes métodos de ajuste de la bicicleta en ciclistas entrenados: influencia de factores biomecánicos y energéticos. Universidad de León.

Figueiredo, P.; Marques, E. A., & Lepers, R. (2016). Changes in contributions of swimming, cycling, and running performances on overall triathlon performance over a 26-year 118  period. Journal of Strength and Conditioning Research, 30(9), 2406–2415.
https://doi.org/10.1519/JSC.0000000000001335

Fintelman, D. M.; Sterling, M.; Hemida, H., & Li, F. (2014). Optimal cycling time trial position models: Aerodynamics versus power output and metabolic energy. Journal of Biomechanics, 47(8), 1894–1898.
https://doi.org/10.1016/j.jbiomech.2014.02.029

Fornasiero, A.; Savoldelli, A.; Modena, R.; Boccia, G.; Pellegrini, B., & Schena, F. (2018). Physiological and anthropometric characteristics of top-level youth cross-country cyclists. Journal of Sports Sciences, 36(8), 901–906.
https://doi.org/10.1080/02640414.2017.1346271

Galindo-Martínez, A.; López-Valenciano, A.; Albaladejo-García, C.; Vallés-González, J. M., & Elvira, J. L. L. (2021). Changes in the trunk and lower extremity kinematics due to fatigue can predispose to chronic injuries in cycling. International Journal of Environmental Research and Public Health, 18(7).
https://doi.org/10.3390/ijerph18073719

García-López, J.; Díez-Leal, S.; Ogueta-Alday, A.; Larrazabal, J., & Rodríguez-Marroyo, J. A. (2016). Differences in pedalling technique between road cyclists of different competitive levels. Journal of Sports Sciences, 34(17), 1619–1626.
https://doi.org/10.1080/02640414.2015.1127987

García-Vaquero, M. P.; Barbado, D.; Juan-Recio, C.; López-Valenciano, A., & Vera-Garcia, F. J. (2020). Isokinetic trunk flexion–extension protocol to assess trunk muscle strength and endurance: Reliability, learning effect, and sex differences. Journal of Sport and Health Science, 9(6), 692–701.
https://doi.org/10.1016/j.jshs.2016.08.011

Grabiner, M. D., & Jeziorowski, J. J. (1991). Isokinetic trunk extension and flexion strength-endurance relationships. Clinical Biomechanics, 6(2), 118–122.
https://doi.org/10.1016/0268-0033(91)90009-F

Hill, D. W. (1993). The critical power concept. Sports Medicine, 16(4), 237-254.

Hopkins, W.; Marshall, S.; Batterham, A., & Hanin, J. (2009). Progressive statistics for studies in sports medicine and exercise science. Medicine and Science in Sports and Exercise, 41(1), 3.

Juan-Recio, C.; Barbado, D.; López-Valenciano, A.; López-Plaza, D.; Montero-Carretero, C., & Vera-García, F. J. (2013). Condición muscular y estabilidad del tronco en judocas de nivel nacional e internacional. Revista de Artes Marciales Asiáticas, 8(2).

Juker, D.; Mcgill, S., & Kropf, P. (1998). Activity of Lumbar Portions of Psoas and the Abdominal Wall During Cycling. Journal of Applied Biomechanics, 14, 428–438.

Korff, T.; Romer, L. M.; Mayhew, I., & Martin, J. C. (2007). Effect of pedaling technique on mechanical effectiveness and efficiency in cyclists. Medicine and Science in Sports and Exercise, 39(6), 991–995.
https://doi.org/10.1249/mss.0b013e318043a235

Martin, J. C., & Brown, N. A. T. (2009). Joint-specific power production and fatigue during maximal cycling. Journal of Biomechanics, 42(4), 474–479.
https://doi.org/10.1016/j.jbiomech.2008.11.015

Macdermid, P. W.; Fink, P. W., & Stannard, S. R. (2015). The Effects of Vibrations Experienced during Road vsOff-road Cycling. International Journal of Sports Medicine, 36(10), 783–788.
https://doi.org/10.1055/s-0034-1398534

Menaspà, P.; Sias, M.; Bates, G., & La Torre, A. (2017). Demands of world cup competitions in elite women’s road cycling. International Journal of Sports Physiology and Performance, 12(10), 1293–1296.

Meuwissen, T. (2016). The Abdominal Musculature and Cycling Performance [Ithaca College, Ithaca, NY].
https://doi.org/10.1249/01.mss.0000487120.85128.40

Muyor, J. M., & Zabala, M. (2015). Road Cycling and Mountain Biking Produces Adaptations on the Spine and Hamstring Extensibility. International Journal of Sports Medicine, 37(1), 43–49.
https://doi.org/10.1055/s-0035-1555861

Muyor, J. M.; López-Miñarro, P. A., & Alacid, F. (2011). Spinal posture of thoracic and lumbar spine and pelvic tilt in highly trained cyclists. Journal of Sports Science & Medicine, 10(2), 355.

Nakagawa, S., & Cuthill, I. C. (2007). Effect size, confidence interval and statistical significance: A practical guide for biologists. Biological Reviews, 82(4), 591–605.
https://doi.org/10.1111/j.1469-185X.2007.00027.x

Nikolenko, M.; Brown, L. E.; Coburn, J. W.; Spiering, B. A., & Tran, T. T. (2011). Relationship between core power and measures of sport performance. Kinesiology, 43(2), 163–168.

Nualpech, W.; Chuensiri, N., & Suksom, D. (2019). Effects of additional core muscle training on cycling. Journal of Sports Science and Health, 20(3), 53–67.

Park, J. H.; Kim, J. E.; Yoo, J. I.; Kim, Y. P.; Kim, E. H., & Seo, T. B. (2019). Comparison of maximum muscle strength and isokinetic knee and core muscle functions according to pedaling power difference of racing cyclist candidates. Journal of Exercise Rehabilitation, 15(3), 401–406.
https://doi.org/10.12965/jer.1938180.090

Park, J. H., & Seo, T. B. (2020). Study on physical fitness factors affecting race-class of Korea racing cyclists. Journal of Exercise Rehabilitation, 16(1), 96–100.
https://doi.org/10.12965/jer.1938738.369

Rannama, I.; Pedak, K.; Bazanov, B., & Port, K. (2017). Cycling specific postural stability during incremental exercise. The relationship with cyclists functional movement screen score. Journal of Human Sport and Exercise, 12(1), 83–95.
https://doi.org/10.14198/jhse.2017.121.07

Reed, C. A.; Ford, K. R.; Myer, G. D., & Hewett, T. E. (2012). The effects of isolated and integrated “core stability” training on athletic performance measures: A systematic review. Sports Medicine, 42(8), 697–706.
https://doi.org/10.2165/11633450-000000000-00000

Rønnestad, B. R., & Hansen, J. (2018). A scientific approach to improve physiological capacity of an elite cyclist. International Journal of Sports Physiology and Performance, 13(3), 390–393.
https://doi.org/10.1123/ijspp.2017-0228

Roth, R.; Donath, L.; Kurz, E.; Zahner, L., & Faude, O. (2017). Absolute and relative reliability of isokinetic and isometric trunk strength testing using the IsoMed-2000 dynamometer. Physical Therapy in Sport, 24, 26–31.
https://doi.org/10.1016/j.ptsp.2016.11.005

Stewart, A.; Marfell-Jones, M.; Olds, T., & De Ridder, J. (2011). International Standards for Anthropometric Assessment. In Potchefstroom, South Africa, ISAK.

van Dieën, J. H.; Koppes, L. L. J., & Twisk, J. W. R. (2010). Low back pain history and postural sway in unstable sitting. Spine, 35(7), 812–817.

Winter, D. (2009). Biomechanics and motor control of human movement (4th ed.). USA: Wiley & Sons.

Wiseman, K. (2013). An investigation into the effectiveness of core muscle strengthening on cycling performance in asymptomatic cyclists. Masters’ Degree in Technology, Chiropractic Durban University of Technology.

Zadow, E.; Fell, J., & Kitic, C. (2016). The reliability of a laboratory-based 4 km cycle time trial on a Wahoo KICKR power trainer. Journal of Science and Cycling, 5(3), 23–27.

Zatoń, M., & Da̧browski, D. (2013). Differences in the direction of effort adaptation between mountain bikers and road cyclists. Human Movement, 14(2), 154–160.
https://doi.org/10.2478/humo-2013-0018


Palabras clave/key words


fuerza de Tronco; estabilidad de tronco; rendimiento; umbral de potencia funcional; core strength; core stability; performance: functional threshold power.

Texto completo/Full Text:

PDF




------------------------ 0 -------------------------

RICYDE. Revista Internacional de Ciencias del Deporte
logopublisher_168


Publisher: Ramón Cantó Alcaraz
ISSN:1885-3137 - Periodicidad Trimestral / Quarterly
Creative Commons License