Efectos de la vibración sobre la actividad del rectus abdominis y sobre la transmisión de aceleraciones durante la realización de un puente frontal. (Effects of whole body vibration on rectus abdominis activity and transmission of accelerations during a front bridge exercise).

Juan Francisco Lisón-Párraga, Mireia Martí-Salvador, Daniel Harto-Cea, Paola Julián-Rufino, Jorge Valero-Navarro, Francisco José Vera-García, Pedro Pérez-Soriano, Salvador Llana-Belloch

Resumen


Durante las dos últimas décadas se ha incrementado notablemente la utilización de la vibración como medio complementario de ejercicio físico. La literatura científica muestra distintos efectos positivos, aunque la mayor parte de ensayos se han centrado en el análisis del ejercicio de squat. El objetivo del presente estudio fue analizar la actividad muscular del rectus abdominis y la transmisión de la vibración en el cuerpo humano durante la realización de un puente frontal sobre una plataforma vibratoria oscilante vibrando a diferentes frecuencias (5, 16, 20 Hz) y a una amplitud constante (3 mm). Las aceleraciones máximas en la cabeza (ejes X, Y, Z) y la actividad electromiográfica media del rectus abdominis fueron determinadas en 31 sujetos sanos por medio de un acelerómetro triaxial y electromiografía de superficie. Para cada eje se calculó un coeficiente de amortiguación restando la aceleración máxima registrada en la cabeza a la aceleración máxima registrada sobre la plataforma. La actividad electromiográfica del rectus  abdominis y los coeficientes de amortiguación en los ejes X y Z aumentaron significativamente con cada incremento en la frecuencia de vibración de la plataforma (p < 0.001). Se concluye que el puente frontal sobre plataforma vibratoria a las frecuencias de 16-20 Hz constituye un ejercicio eficaz para reclutar las fibras musculares del rectus abdominis en la población de estudio.


Abstract

Whole-body vibration exercise have been widely used during the last two decades, with most scientific publications reporting various positive effects. Most commonly, squat exercises have been studied. Instead, this study explored the rectus abdominis activity and the transmission of sinusoidal vibration to the human body during the performance of front bridges on a oscillating vibration platform at different frequencies (5, 16, 20 Hz) with constant amplitude (3 mm). Maximal vibration-induced accelerations at the head (axis X, Y, Z) and mean electromyographic activity were assessed in thirty-one healthy subjects using a skin-mounted triaxial accelerometer and surface electromyography. A damping coefficient was calculated for each axis as the difference between platform and head maximal accelerations. Rectus abdominis activity and the damping coefficients in the axis X and Z significantly increased with each increment in the platform vibration frequency (p < 0.001). It is concluded that a front bridge on an oscillating vibration platform vibrating at 16-20 Hz is effective to activate significantly the rectus abdominis muscles in the studied population.

http://dx.doi.org/10.5232/ricyde2012.02802

------------------------------------------------------------------------

Referencias/references

Adamo, D. E.; Martin, B. J., & Jhonson, P. W. (2002). Vibration induce muscle fatigue, a possible contribution to musculoskeletal injury. Eur J Appl Physiol, 88, 134-40.
http://dx.doi.org/10.1007/s00421-002-0660-y
PMid:12436281

Bjerkefors, A., Ekblom, M.M., Josefsson, K., & Thorstensson, A. (2010). Deep and superficial abdominal muscle activation during trunk stabilization exercises with and without instruction to hollow. Man Ther, 15(5), 502-07.
http://dx.doi.org/10.1016/j.math.2010.05.006
PMid:20570549

Bongiovanni, L. G.; Hagbarth, K. E., & Stjernberg, L. (1990). Prolonged muscle vibration reducing motor unit output in maximal voluntary contractions in man. J Physiol, 423, 15–26.
PMid:2388149    PMCid:1189743

Bosco, C.; Colli, R.; Introine, E.; Cardinale, M.; Tsarpela, O., & Madella, A. (1999). Adaptive responses of human skeletal muscle to vibration exposure. Clin Physiol, 19, 183-87.
http://dx.doi.org/10.1046/j.1365-2281.1999.00155.x
PMid:10200901

Bosco, C.; Lacovelli, M.; Tsarpela, O.; Cardinale, M.; Bonifazi, M.; Tihanyi, J.; Viru, M.; De Lorenzo, A., & Viru, A. (2000). Hormonal responses to whole-body vibration in men. Eur J Appl Physiol, 81, 449-54.
http://dx.doi.org/10.1007/s004210050067
PMid:10774867

Bruyere, O.; Wuidart, M.; Palma, E.; Gourlay, M.; Ethgen, O.; Richy, F., & Reginster, J. (2005). Controlled whole body vibration to decrease fall riskand improve health-related quality of life of nursing home residents. Arch Phys Med Rehabil, 86, 303-7.
http://dx.doi.org/10.1016/j.apmr.2004.05.019
PMid:15706558

Cardinale, M., & Bosco, C. (2003).The effects of vibration as an exercise intervention. Exerc Sport Sci Rev, 31, 3-7.
http://dx.doi.org/10.1097/00003677-200301000-00002
PMid:12562163

Cardinale, M., & Wakeling, J. (2005). Whole body vibration exercise: are vibrations good for you? Br J Sports Med, 39, 585-89.
http://dx.doi.org/10.1136/bjsm.2005.016857
PMid:16118292    PMCid:1725325

Cochrane, D., & Stannard, S. (2005). Acute whole body vibration training increases vertical jump and flexibility performance in elite female hockey players. Br J Sports Med, 39, 860-65.
http://dx.doi.org/10.1136/bjsm.2005.019950
PMid:16244199    PMCid:1725065

Delecluse, C.; Roelants, M., & Verschueren, S. (2003). Strength increase after whole-body vibration compared with resistance training. Med Sci Sports Exerc, 35, 1033-41.
http://dx.doi.org/10.1249/01.MSS.0000069752.96438.B0

Dupuis, H., & Jansen, G. (1981). Immediate effects of vibration transmitted to the hand. In: Bianchi G, Frolvlov KV, Oledzky A, eds. Man under vibration: suffering and protection. Amsterdam: Elsevier, 76-86.
http://dx.doi.org/10.1016/S0166-1116(09)70140-2

Ekstrom, R.A., Donatelli, R.A., & Carp, K.C. (2007). Electromyo¬graphic analysis of core trunk, hip, and thigh muscles during 9 rehabilitation exercises. J Orthop Sports Phys Ther, 37, 754-62.
PMid:18560185

Ettema, G.J.C., & Huijing, P.A. (1994). Frequency response of rat gastrocnemius medialis in small amplitude vibrations. J Biomech, 27, 1015-22.
http://dx.doi.org/10.1016/0021-9290(94)90218-6

Kavcic, N., Grenier, S., & McGill, S.M. (2004). Quantifying tissue loads and spine stability while performing commonly prescribed low back stabilization exercises. Spine, 29, 2319-29.
http://dx.doi.org/10.1097/01.brs.0000142222.62203.67
PMid:15480148

Kiiski, J.; Heinonen, A.; Järvinen, T.; Kannus, P., & Sievänen, H. (2008). Transmission of Vertical Whole Body Vibration to the Human Body. Journal of bone and mineral research, 23, 8.
http://dx.doi.org/10.1359/jbmr.080315
PMid:18348698

Kim, W.; Voloshin, A.S.; Johnson, S.H., & Simkin, A. (1993). Measurement of the impulsive bone motion by skin-mounted accelerometers. J Biomech Eng, 115, 47-52.
http://dx.doi.org/10.1115/1.2895470
PMid:8445898

Kitazaki, S., & Griffin, M.J. (1995). A data correction method for surface measurement of vibration on the human body. J Biomech, 28, 885-90.
http://dx.doi.org/10.1016/0021-9290(95)95279-E

Konrad, P., Schmitz, K., & Denner, A. (2001). Neuromuscular evaluation of trunk-training exercises. J Athl Train, 36, 109-18.
PMid:12937449    PMCid:155519

Lafortune, M.A.; Henning, E., & Valiant, G.A. (1995). Tibial shock measured with bone and skin mounted transducers. J Biomech, 28, 989-93.
http://dx.doi.org/10.1016/0021-9290(94)00150-3

Lau, R.W.; Liao, L.R.; Yu, F.; Teo, T.; Chung, R.C., & Pang, M.Y. (2011). The effects of whole body vibration therapy on bone mineral density and leg muscle strength in older adults: a systematic review and meta-analysis. Clin Rehabil, 25(11), 975-88.
http://dx.doi.org/10.1177/0269215511405078
PMid:21849376

Mansfield, N.J. & Griffin, M.J. (2000). Non-linearities in apparent mass and transmissibility during exposure to whole-body vertical vibration. J Biomech, 33, 933-41.
http://dx.doi.org/10.1016/S0021-9290(00)00052-X

McGill, S.M., & Karpowicz, A. (2009). Exercises for spine stabilization: motion/motor patterns, stability progressions, and clinical technique. Arch Phys Med Rehabil, 90, 118-26.
http://dx.doi.org/10.1016/j.apmr.2008.06.026
PMid:19154838

Mester, J.; Kleinöder, H., & Yue, Z. (2006). Vibration training: benefits and risks. J Biomech, 39, 1056-65.
http://dx.doi.org/10.1016/j.jbiomech.2005.02.015
PMid:15869759

Necking, L. E.; Lundborg, G., y Fridén, J. (2002). Hand muscle weakness in long-term vibration exposur. J Hand Surg [Br], 27B, 520-5.
http://dx.doi.org/10.1054/jhsb.2002.0810

Nigg, B.M. (1997). Impact forces in running. Curr Opin Orthop, 8, 43-7.
http://dx.doi.org/10.1097/00001433-199712000-00007

Pel, J.J.M.; Bagherib, J.; Van Dama, L.M.; Van den Berg-Emonsb, H.J.G.; Horemansb, H.L.D.; Stamb, H.J., & Van der Steena, J. (2009). Platform accelerations of three different whole-body vibration devices and the transmission of vertical vibrations to the lower limbs. Medical Engineering & Physics, 31, 937-44.
http://dx.doi.org/10.1016/j.medengphy.2009.05.005

Pollock, R.D.; Woledge, R.C.; Mills, K.R.; Martin, F.C., & Newham, D.J. (2010). Muscle activity and acceleration during whole body vibration: effect of frequency and amplitude. Clin Biomech, 25(8), 840-46.
http://dx.doi.org/10.1016/j.clinbiomech.2010.05.004
PMid:20541297

Rakheja, S.; Dong, R.G.; Patra, S.; Boileau, P.E.; Marcotte, P., & Warren, C. (2010). Biodynamics of the human body under whole-body vibration: Synthesis of the reported data. International Journal of Industrial Ergonomics, 40, 710-32.
http://dx.doi.org/10.1016/j.ergon.2010.06.005

Rauch, F.; Sievanen, S.; Boonen, M.; Cardinale, M.; Degens, H.; Felsenberg, J.; Roth, E.; Schoneau, E.; Verschueren, J., & Rittweger, J. (2010). Recommendations of the International Society of Musculoskeletal and Neuronal Interactions. J Musculoskelet Neuronal Interact, 10(3), 193-98.
PMid:20811143

Rhen, B.; Lidström, J.; Skoglund, B., & Lindström, B. (2007). Effects on leg muscular performance from whole-body vibration exercise: a systematic review. Scand J Med Sci Sports, 17, 2-11.
PMid:16903900

Rittweger, J.; Just, K.; Kautzsch, K.; Reeg, P., y Felsenberg, D. (2002). Treatment of chronic lower back pain with lumbar extension and whole-body vibration exercise – a randomized controlled trial. Spine, 27, 1829-34.
http://dx.doi.org/10.1097/00007632-200209010-00003
PMid:12221343

Ritzmann, R.; Kramer, A.; Gruber, M.; Gollhofer, A., & Tauber W. (2010). EMG activity during whole body vibration: motion artifacts or stretch reflexes? Eur J Appl Physiol, 110(1), 143-51.
http://dx.doi.org/10.1007/s00421-010-1483-x
PMid:20419311

Roelants, M.; Delecluse, C.; Goris, M., & Verschueren, S. (2004). Effects of 24 weeks of whole body vibration training on body composition and muscle strength in untrained females. Int J Sports Med, 25, 1-5.
http://dx.doi.org/10.1055/s-2003-45238
PMid:14750005

Roelants, M.; Delecluse, C., & Verschueren, S.M. (2004b). Whole-body-vibration training increases knee-extension strength and speed of movement in older women. J Am Geriatr Soc, 52, 901-8.
http://dx.doi.org/10.1111/j.1532-5415.2004.52256.x
PMid:15161453

Rönnestad, B. (2004). Comparing the performance-enhancing effects of squats on a vibration platform with conventional squats recreationally resistance-trained men. J Strength Cond Res, 18, 839-45.
http://dx.doi.org/10.1519/14573.1
PMid:15574092

Rubin, C.; Pope, M.; Fritton, J.C.; Magnusson, M.; Hansson, T., & McLeod, K. (2003). Transmissibilty of 15-hertz to 35-hertz vibrations to the human hip and lumbar spine: determining the physiologic feasibility of delivering low-level anabolic mechanical stimuli to skeletal regions at greatest risk of fracture because of osteoporosis. Spine, 28, 2621-7.
http://dx.doi.org/10.1097/01.BRS.0000102682.61791.C9
PMid:14652479

Runge, M.; Rehfeld, G., & Resnicek, E. (2000). Balance training and exercise in geriatric patients. J Musculoskel Neuron Interact, 1, 61-5.
PMid:15758528

Russo, C.; Lauretani, F.; Bandinelli, S.; Bartali, B.; Cavazzini, C.; Guralnik, J., & Ferrucci, L. (2003). High-frequency vibration training increases muscle power in postmenopausal women. Arch Phys Med Rehab, 84, 1854-57.
http://dx.doi.org/10.1016/S0003-9993(03)00357-5

Stevens, V.K.; Bouche, K.G.; Mahieu, N.N.; Coorevits, P.L.; Vanderstraeten, G.G., & Danneels, L.A. (2006). Trunk muscle activity in healthy subjects during bridging stabilization exercises. BMC Musculoskelet Disord, 7, 75.
http://dx.doi.org/10.1186/1471-2474-7-75
PMid:16987410    PMCid:1599724

Torvinen, S.; Kannus, P.; Sievänen, H.; Järvinen, T.; Pasanen, M.; Kontulainen, S.; Järvinen, T.; Järvinen, P., & Vouri, I. (2002). Effect of four-month vertical whole body vibration on performance and balance. Med Sci Sports Exerc, 34, 1523-28.
http://dx.doi.org/10.1097/00005768-200209000-00020

Torvinen, S.; Kannus, P.; Sievänen, H.; Järvinen, T.; Pasanen, M.; Kontulainen, S.; Nenonen, A.; Järvinen, T.; Paakkala, T.; Järvinen, M., & Vuori, I. (2003). Effect of 8-month vertical whole body vibration on bone, muscle performance and body balance: a randomized controlled study. J Bone Min Res, 18, 876-84.
http://dx.doi.org/10.1359/jbmr.2003.18.5.876
PMid:12733727

Vera-Garcia, F.J.; Brown, S.H.; Gray, J.R., & McGill, S.M. (2006). Effects of different levels of torso coactivation on trunk muscular and kinematic responses to posteriorly applied sudden loads. Clin Biomech, 21(5), 443-55.
http://dx.doi.org/10.1016/j.clinbiomech.2005.12.006
PMid:16442677

Vera-Garcia, F.J.; Elvira, J.L.; Brown, S.H., & McGill, S.M. (2007). Effects of abdominal stabilization maneuvers on the control of spine motion and stability against sudden trunk perturbations. J Electromyogr Kinesiol, 17(5), 556-67.
http://dx.doi.org/10.1016/j.jelekin.2006.07.004
PMid:16996278

Vera-Garcia, F.J.; Moreside, J.M., & McGill, S.M. (2010). MVC techniques to normalize trunk muscle EMG in healthy women. J Electromyogr Kinesiol, 20(1), 10-6.
http://dx.doi.org/10.1016/j.jelekin.2009.03.010
PMid:19394867

Verschueren, S. M.; Roelants, M.; Delecluse, C.; Swinnen, S.; Vanderschueren, D., & Boonen, S. (2004). Effect of 6-month whole body vibration training on hip density, muscle strength, and postural control in postmenopausal women: a randomized controlled pilot study. J Bone Miner Res, 19, 352-9.
http://dx.doi.org/10.1359/JBMR.0301245
PMid:15040822

Wakeling, J.M., & Nigg, B.M. (2001). Modification of soft tissue vibrations in the leg by muscular activity. J Appl Physiol, 90, 412-20.
PMid:11160036

Wakeling, J.M.; Nigg, B.M., & Rozitis, A.I. (2002). Muscle activity in the lower extremity damps the soft-tissue vibrations which occur in response to pulsed and continuous vibrations. J Appl Physiol, 93, 1093-103.
PMid:12183507

 


Palabras clave/key words


vibración corporal; aceleración; electromiografía; puente frontal; whole body vibration; acceleration; electromyography; front bridge.

Texto completo/Full Text:

PDF




------------------------ 0 -------------------------

RICYDE. Revista Internacional de Ciencias del Deporte
logopublisher_168


Publisher: Ramón Cantó Alcaraz
ISSN:1885-3137 - Periodicidad Trimestral / Quarterly
Creative Commons License